Constrained On-line Adaptation for Aircraft Control

Silvia Ferrari
Advisor: Prof. Robert F. Stengel
Princeton University

FAA/NASA Joint University Program on Air Transportation, Princeton University, Princeton NJ

January 10-11, 2002

A Multiphase Learning Approach to Automated Reasoning

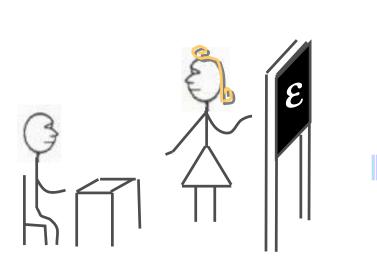
On-line

Control Routing

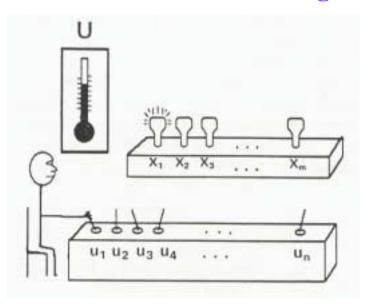
Identification Scheduling

Planning ...

Supervised Learning:



Reinforcement Learning:

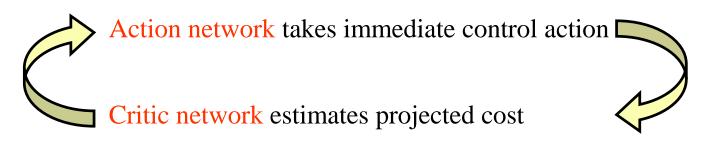


Introduction

 Stringent operational requirements introduce Complexity Nonlinearity Uncertainty

Classical/neural synthesis of control systems
 A-priori knowledge
 Adaptive neural networks

On-line adaptation takes place during every time interval:



Full Envelope Aircraft Control

Multiphase learning

Initialization: match linear controllers exactly off-line

On-line learning: full-scale simulations, testing, or operation

- On-line training improves performance w.r.t. linear controllers:
 Differences between actual and assumed models
 Nonlinear effects not captured in linearizations
- Algebraically constrained on-line adaptation:
 Preserve linear control knowledge
- Potential applications:

Incorporate pilot's knowledge into controller *a-priori*Uninhabited air vehicles control
Aerobatic flight control

Motivation for Neural Network-Based Controller

Neural Networks for control: coping with complexity

- Learning
- Flexible logic
- Applicability to nonlinear systems
- Applicability to multi-variable systems
- Parallel distributed processing and hardware implementation

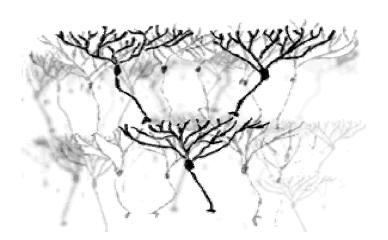


Table of Contents

- Aircraft control design approach
- Initialization phase

Linear control design

Algebraic neural network initialization

Joining longitudinal and lateral networks

On-line learning phase

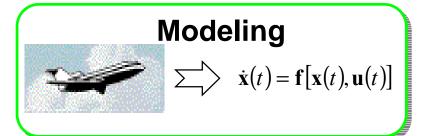
Adaptive critic design

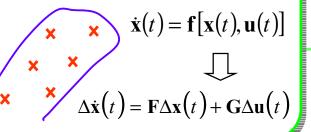
Algebraically-constrained on-line learning

Resilient backpropagation algorithms

Conclusions

Aircraft Control Design Approach



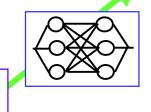


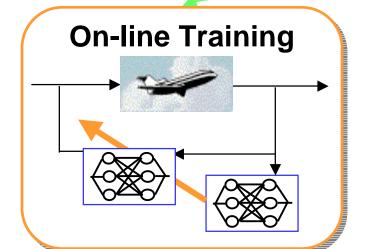
Linear Control

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

$$\Delta \mathbf{u} = -\mathbf{C} \Delta \mathbf{x}$$

Initialization





Linear Control Design

Linearizations:

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)]$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

$$\int \Delta \dot{\mathbf{x}}_{L}(t) = \mathbf{F}_{L} \Delta \mathbf{x}_{L}(t) + \mathbf{G}_{L} \Delta \mathbf{u}_{L}(t)
\Delta \dot{\mathbf{x}}_{LD}(t) = \mathbf{F}_{LD} \Delta \mathbf{x}_{LD}(t) + \mathbf{G}_{LD} \Delta \mathbf{u}_{LD}(t)$$

Linear control design:

- Longitudinal (*L*)
- Lateral-directional (*LD*)

Aircraft Flight Envelope $\{V, H\}$:

Altitude (m)

Proportional Integral Linear Control Law

Quadratic cost function to be minimized:

Quadratic cost function to be infinitized:
$$J = \lim_{t_f \to \infty} \frac{1}{2} \int_{0}^{t_f} L[\mathbf{x}_a(\tau), \tilde{\mathbf{u}}(\tau)] d\tau$$

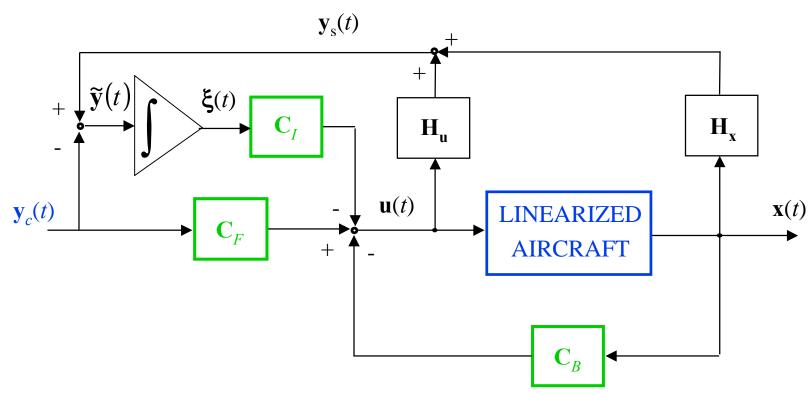
$$= \lim_{t_f \to \infty} \frac{1}{2} \int_{0}^{t_f} [\mathbf{x}_a^T(\tau) \mathbf{Q} \mathbf{x}_a(\tau) + 2\mathbf{x}_a^T(\tau) \mathbf{M} \tilde{\mathbf{u}}(\tau) + \tilde{\mathbf{u}}^T(\tau) \mathbf{R} \tilde{\mathbf{u}}(\tau)] d\tau$$
where $\tilde{\mathbf{y}}(t) \equiv \mathbf{y}_s(t) - \mathbf{y}_c(t)$, $\xi(t) = \int_{0}^{t} \tilde{\mathbf{y}}(\tau) d\tau$, and $\mathbf{x}_a \equiv [\tilde{\mathbf{x}}^T \quad \xi^T]^T$

Minimizing Linear Control Law:

$$\widetilde{\mathbf{u}}(t) = -\mathbf{C}\mathbf{x}_{a}(t) = -\mathbf{C}_{B}\widetilde{\mathbf{x}}(t) - \mathbf{C}_{I}\xi(t) \equiv \Delta\mathbf{u}_{B}(t) + \Delta\mathbf{u}_{I}(t)$$

Linear Proportional-Integral Controller

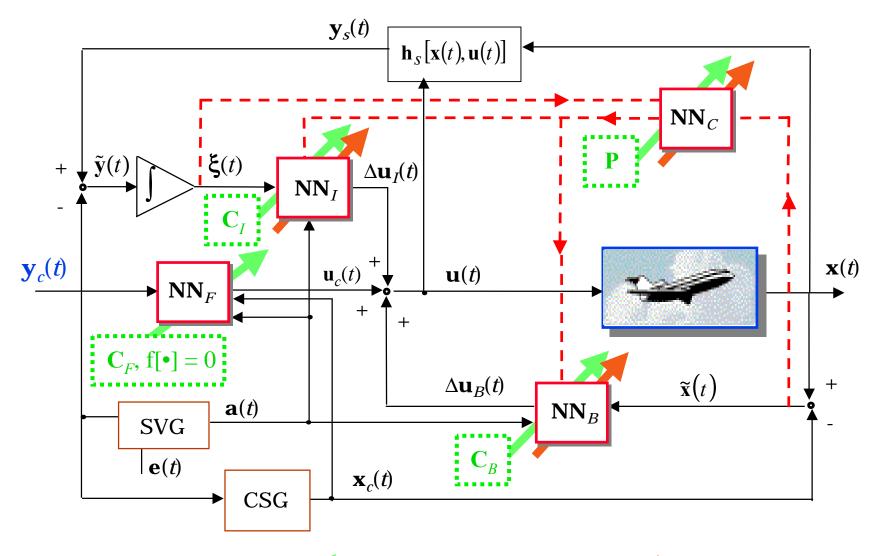
Closed-loop stability: $\mathbf{x} \to \mathbf{x}_c$, $\mathbf{u} \to \mathbf{u}_c$, $\tilde{\mathbf{y}} \to 0$



Omitting Δ 's, for simplicity:

$$\tilde{\mathbf{x}}(t) \equiv \mathbf{x}(t) - \mathbf{x}_c(t), \ \tilde{\mathbf{u}}(t) \equiv \mathbf{u}(t) - \mathbf{u}_c(t), \dots, \ \mathbf{y}_c = \text{desired output}, \ (\mathbf{x}_c, \mathbf{u}_c) = \text{set point}.$$

Proportional-Integral Neural Network Controller



: Algebraic Initialization, : On-line Training.

One-hidden Layer Sigmoidal Neural Network

Output: $z = NN(\mathbf{p})$

Input: **p**

Adjustable parameters:

W, d, v

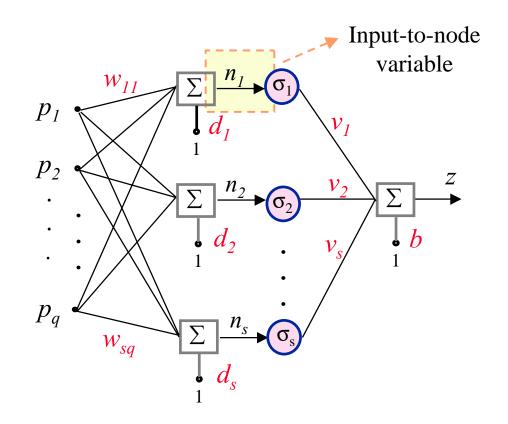
Output equations:

$$z = \mathbf{v}^T \, \mathbf{\sigma}[\mathbf{W} \mathbf{p} + \mathbf{d}]$$

Gradient equations:

$$\frac{\partial z}{\partial p_j} = \sum_{i=1}^{S} \frac{\partial z}{\partial n_i} \frac{\partial n_i}{\partial p_j}$$

$$= \sum_{i=1}^{S} v_i \sigma'(\underline{n_i}) w_{ij}, j = 1, ..., q$$



s - Hidden nodes

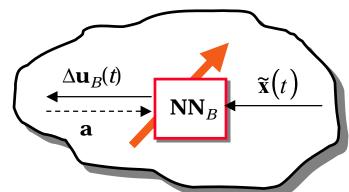
$$\sigma(n) = \frac{(e^n - 1)}{(e^n + 1)}, \begin{cases} -\infty < n < \infty \\ -1 < \sigma(n) < 1 \end{cases}$$

Feedback (Action) Neural Network Initialization

From the Proportional-Integral optimal control law:

•
$$\Delta \mathbf{u}_B[\widetilde{\mathbf{x}}(t)] = -\mathbf{C}_B\widetilde{\mathbf{x}}(t) \rightarrow \Delta \mathbf{u}_B[\mathbf{0}] = \mathbf{0}$$

$$\bullet \quad \frac{\partial \Delta \mathbf{u}_B(t)}{\partial \widetilde{\mathbf{x}}(t)} = -\mathbf{C}_B$$



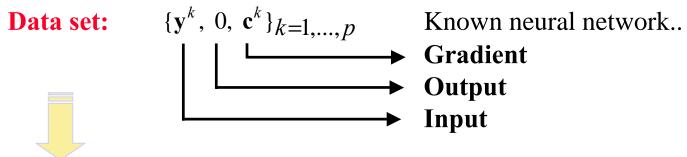
Feedback Neural Network Initialization Requirements:

Accounts for regulation, $\mathbf{z}_B = \mathbf{NN}_B(\mathbf{\tilde{x}}, \mathbf{a})$. For each operating point, k,

(R1)
$$\mathbf{z}_{B}(\mathbf{0}_{n\times 1}, \mathbf{a}^{k}) = \mathbf{0}$$

(R2) $\frac{\partial \mathbf{z}_{B}(t)}{\partial \mathbf{\tilde{x}}(t)}\Big|_{\mathbf{\tilde{x}}=\mathbf{0}, \mathbf{a}=\mathbf{a}^{k}} = \frac{\partial (\Delta \mathbf{u}_{B}(t))}{\partial \mathbf{\tilde{x}}(t)}\Big|_{\mathbf{\tilde{x}}=\mathbf{0}, \mathbf{a}=\mathbf{a}^{k}} = -\mathbf{C}_{B}^{k}$

General Form of Initialization Requirements



Specifications:
$$\begin{cases} z(\mathbf{y}^k) = 0 \\ \frac{\partial z}{\partial \mathbf{n}} (\mathbf{y}^k) = \mathbf{c}^k \end{cases}$$
, where $\mathbf{y}^k = \begin{bmatrix} \mathbf{x}^k \\ \mathbf{a}^k \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{a}^k \end{bmatrix}$

Output and Gradient Nonlinear Transcendental

Initialization Equations: $0 = \mathbf{v}^T \sigma [\mathbf{W} \mathbf{y}^k + \mathbf{d}]$

$$(\mathbf{c}^k)^T = \mathbf{W}^T \{ \mathbf{v} \otimes \mathbf{\sigma}' [\mathbf{W} \mathbf{y}^k + \mathbf{d}] \}, k = 1, ..., p$$

Algebraic Initialization Principles

If all input-to-node values are assumed known:

$$\mathbf{n}^k \equiv [n_1^k \quad \cdots \quad n_S^k]^T = \mathbf{W}\mathbf{y}^k + \mathbf{d}, \quad k = 1, ..., p$$

$$\mathbf{u} = \mathbf{S}\mathbf{v}$$

$$\mathbf{c}^k = \mathbf{B}^k \mathbf{W}$$

Output and Gradient Linear Algebraic

Initialization Equations

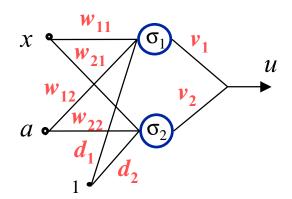
Where:

$$\mathbf{u} = \begin{bmatrix} u^{1} & \cdots & u^{p} \end{bmatrix}^{T}, \quad \mathbf{B}^{k} = \{\mathbf{v} \otimes \mathbf{\sigma}' [\mathbf{n}^{k}]\}^{T}, \quad \mathbf{S} = \begin{bmatrix} \sigma(n_{1}^{1}) & \sigma(n_{2}^{1}) & \cdots & \sigma(n_{s}^{1}) \\ \sigma(n_{1}^{2}) & \sigma(n_{2}^{2}) & \cdots & \sigma(n_{s}^{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma(n_{1}^{p}) & \sigma(n_{2}^{p}) & \cdots & \sigma(n_{s}^{p}) \end{bmatrix}.$$

Algebraic Initialization Example: 2-nodes NN_B

Data Set:

Op. Point	A	В
\mathcal{X}^k	0	0
a^k	8	10
u^k	0	0
$c^k = (\partial u/\partial x)^k$	15	-8



Algebraic Solution:

Pick any input-to-node values, n_1^A , n_2^A , n_1^B , and n_2^B

$$u^{A} = v_{1}\sigma(n_{1}^{A}) + v_{2}\sigma(n_{2}^{A}), \ u^{B} = v_{1}\sigma(n_{1}^{B}) + v_{2}\sigma(n_{2}^{B}) \rightarrow v_{1}, v_{2}$$

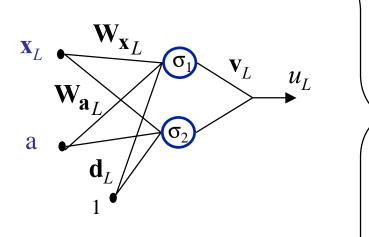
$$c^{A} = v_{1} w_{11} \sigma'(n_{1}^{A}) + v_{2} w_{21} \sigma'(n_{2}^{A}), \quad c^{B} = v_{1} w_{11} \sigma'(n_{1}^{B}) + v_{2} w_{21} \sigma'(n_{2}^{B}) \rightarrow w_{11}, w_{21}$$

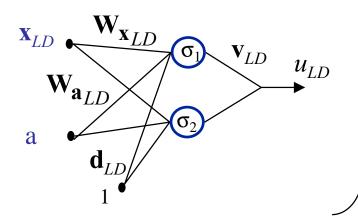
$$n_1^A = w_{11} x_1^A + w_{12} x_2^A + d_1, \quad n_1^B = w_{11} x_1^B + w_{12} x_2^B + d_1, \quad \rightarrow w_{12}, d_1$$

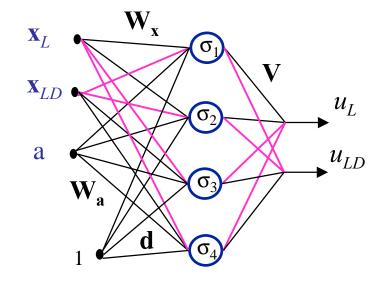
$$n_2^A = w_{21} x_1^A + w_{22} x_2^A + d_2, \quad n_2^B = w_{21} x_1^B + w_{22} x_2^B + d_2, \quad \rightarrow w_{22}, d_2$$

Joining Two Initialized Longitudinal and Lateral Neural Networks

Initialized Networks:



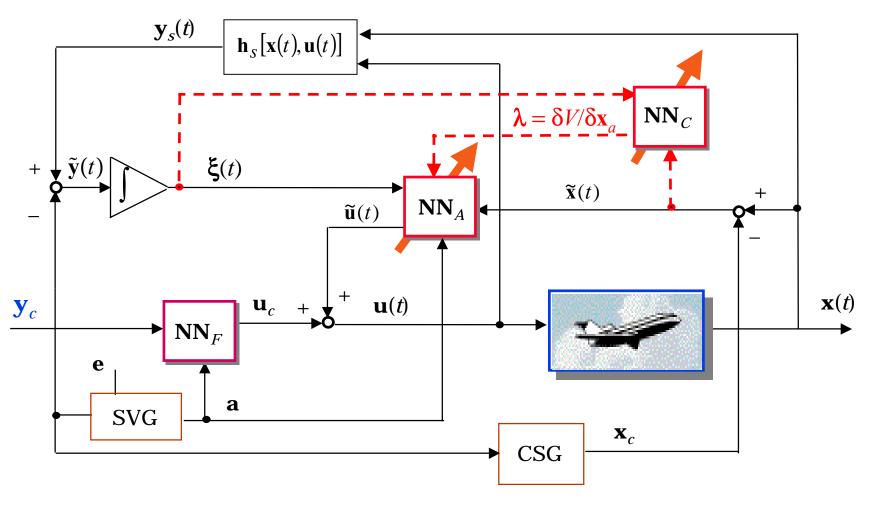




$$\mathbf{W}_{\mathbf{X}} = \begin{bmatrix} \mathbf{W}_{\mathbf{X}_{L}} & \mathbf{0} \\ \mathbf{0} & \mathbf{W}_{\mathbf{X}_{LD}} \end{bmatrix} \quad \mathbf{d} = \begin{bmatrix} \mathbf{d}_{L} \\ \mathbf{d}_{LD} \end{bmatrix}$$

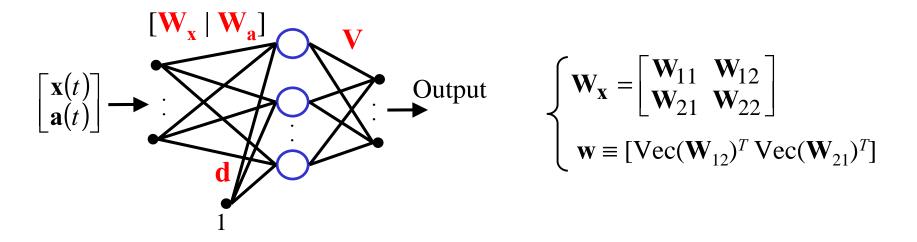
$$\mathbf{W}_{\mathbf{a}} = \begin{bmatrix} \mathbf{W}_{\mathbf{a}_{L}} \\ \mathbf{W}_{\mathbf{a}_{LD}} \end{bmatrix} \quad \mathbf{V} = \begin{bmatrix} \mathbf{v}_{L}^{T} & \mathbf{0} \\ \mathbf{0} & \mathbf{v}_{LD}^{T} \end{bmatrix}$$

Proportional-Integral Neural Network Controller: On-line Action and Critic Networks Implementation

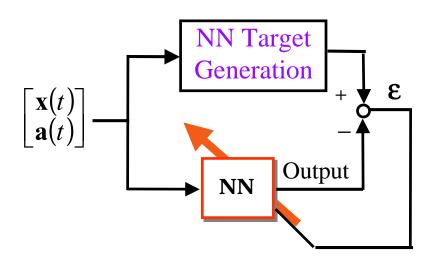


$$V(t) = -\lim_{t_f \to \infty} \frac{1}{2} \int_{t_f}^{t} \left[\mathbf{x}_a^T(\tau) \mathbf{Q} \mathbf{x}_a(\tau) + 2\mathbf{x}_a^T(\tau) \mathbf{M} \widetilde{\mathbf{u}}(\tau) + \widetilde{\mathbf{u}}^T(\tau) \mathbf{R} \widetilde{\mathbf{u}}(\tau) \right] d\tau, \quad \text{Sometimes of the expression}$$
: On-line Training

Action/Critic Network On-line Learning, at Time t



Each network must meet its target, subject to <u>Initialization Requirements</u> (IR)

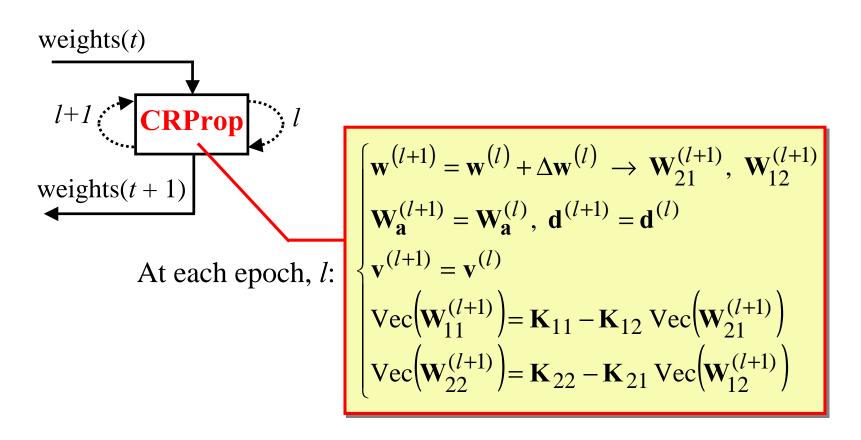


$$\min_{\mathbf{W}, \mathbf{d}, \mathbf{V}} E = \min_{\mathbf{W}, \mathbf{d}, \mathbf{V}} |\mathbf{\varepsilon}|^2, \text{sbj. to IR}$$

$$\begin{cases} E \equiv \text{Network performance} \\ \mathbf{\varepsilon} \equiv \text{Network error} \\ \text{Vec} \equiv \text{Vec operation} \end{cases}$$

Algebraically Constrained On-line Learning Algorithm

• At time t, the Constrained Resilient Backpropagation (CRProp) algorithm minimizes E, computing the weights to be used at (t + 1):

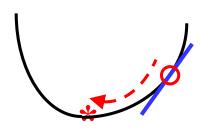


Where \mathbf{K}_{11} , \mathbf{K}_{12} , \mathbf{K}_{21} , and \mathbf{K}_{22} are known, constant matrices

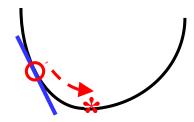
Resilient Backpropagation Algorithm

The size and direction of each weight's increment, $\Delta \mathbf{w}^{(l)}$, are based on the <u>sign</u> of the gradient of the performance, E, w.r.t. the weight, \mathbf{w}

Increment Direction:

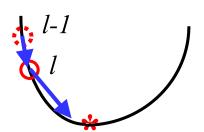


$$\left. \frac{\partial E}{\partial w} \right|^{(l)} > 0$$

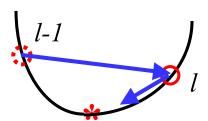


$$\left| \frac{\partial E}{\partial w} \right|^{(l)} < 0$$

Increment Size:



$$\left. \frac{\partial E}{\partial w} \right|^{(l-1)} \frac{\partial E}{\partial w} \right|^{(l)} > 0$$



$$\left. \frac{\partial E}{\partial w} \right|^{(l-1)} \frac{\partial E}{\partial w} \right|^{(l)} < 0$$

Summary and Conclusions

• Objectives:

Improve performance under unforeseen conditions

Preserve initialization control knowledge during on-line learning

• Achievements:

Systematic approach for designing adaptive systems

Guaranteed fulfillment of adaptation constraints

Innovative algebraic framework for neural network learning

- Successful implementation of an adaptive critic approach for flight control:
 - Algebraic initialization
 - On-line training by a Resilient Backpropagation algorithm

Other On-line Network-Control Applications:

Process control, air-traffic management, reconfiguring hardware (raw chips), anomaly detection, criminal profiling, image processing, ...